

Муниципальное казённое общеобразовательное учреждение «Новомоношкинская средняя общеобразовательная школа» Заринского района Алтайского края

PACCMOTPEHO

Методическим советом школы протокол № 5 от15.07.2022

УТВЕРЖДЕНО

Приказом директора МКОУ «Новомоношкинская сош» Приказ № 70 от 15.07.2022

Программа учебного курса дополнительного образования технической направленности «Робо»

Срок реализации 1 год.

Составитель программы: Таловский Е.А. учитель информатики

1. Пояснительная записка

Направленность программы — техническая. **Уровень освоения** — общеразвивающая.

Актуальность программы

Научно-техническое творчество на сегодняшний день является предметом особого внимания и одним из аспектов развития интеллектуальной одаренности детей. Технические достижения всё быстрее проникают во все сферы человеческой жизнедеятельности и вызывают интерес детей и подростков к современной технике. Технические объекты окружают нас повсеместно, в виде бытовых приборов и аппаратов, игрушек, транспортных, строительных и других машин. Дети познают и принимают мир таким, каким его видят, пытаются осмыслить, осознать, а потом объяснить. Известно, что наилучший способ развития технического мышления и творчества, знаний технологий неразрывно связан с непосредственными реальными действиями, авторским конструированием.

Технология, основанная на элементах LEGO - это проектирование, конструирование и программирование различных механизмов и машин. При построении модели затрагивается множество проблем из разных областей знаний. Образовательная система LEGO востребована в тех областях знаний, для которых важны; информатика (абстракция, логика), технология (конструирование), математика (моделирование), физика (основы механики).

Работа с образовательными конструкторами LEGO Education позволяет школьникам в форме познавательной игры узнать многие важные идеи и развить необходимые в дальнейшей жизни навыки.

На занятиях при решении практических задач и поиска оптимальных решений учащиеся осваивают понятия баланса конструкции, ее оптимальной формы, прочности, устойчивости, жесткости и подвижности, а также передачи движения внутри конструкции. Конструктор LEGO предоставляет широкие возможности для знакомства детей с зубчатыми передачами, рычагами, шкивами, маховиками, основными принципами механики, а также для изучения энергии, подъемной силы и равновесия.

В процессе обучения происходит тренировка мелких и точных движений, формируется элементарное конструкторское мышление, ребята учатся работать по предложенным инструкциям и схемам, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений, изучают принципы работы механизмов.

Цель программы: развитие конструкторского мышления, учебноинтеллектуальных, организационных, социально-личностных и коммуникативных компетенций через освоение технологии LEGO конструирования и моделирования.

Задачи программы:

Образовательные:

- способствовать формированию знаний, умений и навыков в области технического конструирования и моделирования;
- познакомить учащихся с комплексом базовых технологий, применяемых при создании роботов (простейшие механизмы, пневматика, источники энергии, управление электромоторами, зубчатые передачи, инженерные графические среды проектирования и др.);
- способствовать формированию навыка проведения исследования явлений и простейших закономерностей;
- способствовать повышению мотивации учащихся к изобретательству и созданию собственных роботизированных систем.

Развивающие:

- способствовать формированию и развитию познавательной потребности в освоении физических знаний;
- развивать мелкую моторику, внимательность, аккуратность и изобретательность;
- развивать пространственное воображение учащихся;
- создать условия для развития поисковой активности, исследовательского мышления учащихся.

Воспитательные:

- способствовать развитию коммуникативной культуры;
- формировать у учащихся стремление к получению качественного законченного результата;
- формировать навык работы в группе.
- способствовать созданию творческой атмосферы сотрудничества,

обеспечивающей развитие личности, социализацию и эмоциональное благополучие каждого ребенка.

Для проведения занятий по программе используются образовательные конструкторы LEGO Wedo

Срок реализации программы -1 год, 68 часов. **Возраст детей** -7 -12 лет. Формирование контингента учебных групп происходит без специального отбора.

Формы и режимы занятий. Занятия проводятся 2 раза в неделю по 1 часу.

Основная форма занятий: упражнения выполнение групповых и И работ. При индивидуальных практических изучении нового материала используются словесные формы: лекция, эвристическая беседа, дискуссия. При реализации личных проектов используются формы организации самостоятельной работы. Значительное место в организации образовательного участию детей в соревнованиях, процесса отводится практическому разнообразных мероприятиях по техническому легоконструированию.

Планируемые результаты

Образовательными результатами освоения программы является формирование следующих знаний и умений:

Предметные знания

- правила техники безопасности при работе с конструктором;
- основные соединения деталей LEGO конструктора;
- понятие, основные виды, построение конструкций;
- основные свойства различных видов конструкций (жёсткость, прочность, устойчивость);
- понятие, виды механизмов и передач, их назначение и применение; понятие и виды энергии;
- разновидности передач и способы их применения.

Умения:

- создавать простейшие конструкции, модели по готовым схемам сборки и эскизам;
- характеризовать конструкцию, модель;
- создавать конструкции, модели с применением механизмов и передач;
- находить оптимальный способ построения конструкции, модели с применением наиболее подходящего механизма или передачи;
- описывать виды энергии;
- строить предположения о возможности использования того или иного

механизма, и экспериментально проверять его;

- создавать индивидуальные и групповые проекты при работе в команде;
- уметь самостоятельно решать технические задачи, конструировать машины и механизмы, проходя при этом путь от постановки задачи до работающей модели.

Метапредметными результатами изучения программы является формирование следующих универсальных учебных действий (УУД):

Познавательные УУД:

- умение определять, различать и называть предметы (детали конструктора);
- умение выстраивать свою деятельность согласно условиям (конструировать по условиям, по образцу, по чертежу, по заданной схеме и самостоятельно строить схему);
- умение ориентироваться в своей системе знаний: отличать новое от уже известного;
- умение использовать для поиска более рациональных решений знаний физических закономерностей и уметь объяснять принцип действия механизмов с использованием физической терминологии.

Регулятивные УУД:

- умение работать по предложенным инструкциям;
- умение определять и формулировать цель деятельности на занятии;
- умение формулировать гипотезу, проводить ее проверку и делать вывод
- на основе наблюдения.

Коммуникативные УУД:

- умение интегрироваться в группу сверстников и строить продуктивное взаимодействие и сотрудничество со сверстниками и взрослыми;
- умение учитывать позицию собеседника (партнёра);
- умение адекватно воспринимать и передавать информацию;
- умение слушать и вступать в диалог.

Личностные УУД:

- положительное отношение к учению, к познавательной деятельности,
- желание приобретать новые знания, умения, совершенствовать имеющиеся,
 - умение осознавать свои трудности и стремиться к их преодолению, участие в творческом, созидательном процессе.

2. Учебно-тематический план

Nº	Раздел,тема	Количествочасов			Формыконтро
п/		всего	теори	практи	ля
П			Я	ка	
1	Вводноезанятие	2	1	1	опрос
	Целиизадачипрограммы				
	Введениевробототехнику				викторина,выпо
1	Историяразвитияробототехники	2	1	1	лнениепрактич.
2	Устройствоперсональногокомпьютера	2	1	1	заданий
3	Алгоритмпрограммирования	3	1	2	1
	Итого	9	4	5	1
2	КонструкторLegoWedo				опрос,выполне
1	НаборконструктораLegoWedo	3	1	2	ниепрактич.зад
2	СоставныечастиконструктораLego Wedo	3	1	2	аний
	Итого	6	2	4	1
3	ПрограммноеобеспечениеLegoWedo	2	1	1	опрос,выполне
					ниепрактич.
					заданий
4	ДеталиLegoWedоимеханизмы				опрос,выполне
1	Мотор,датчикирасстоянияинаклона	2	0,5	1,5	ниепрактич.зад
2	Зубчатые колеса, повышающая	2	0,5	1,5	аний
	ипонижающая передачи				_
3	Ременнаяпередача	2	0,5	1,5	
4	Червячнаяпередача	2	0,5	1,5	
5	Кулачковаяирычажнаяпередачи	2	0,5	1,5	
	Итого	10	2,5	7,5	
5	СборкамоделейLegoWedo				опрос,тестиров
1	Сборкаипрограммированиемодели	7	1	6	ание,выполнен
					иепрактич.зада
	«Обезьянкабарабанщица»(ний
	или«Голодныйаллигатор»)				4
2	Сборкаипрограммированиемодели	3,5	0,5	3	
	«Танцующиептицы»(или«Рычащийлев»)				
3	Сборкаипрограммированиемодели	4,5	0,5	4	1
٥	«Непотопляемыйпарусник»,	.,5	0,5		
		_			4
4	Сборкаипрограммированиемодели	7	1	6	
	«Нападающий»(или«Вратарь»)				
	Итого	22	3	19	1
6	Конструктор и				опрос,выполне

	программноеобеспечениеL egoWedo2.0.				ние
1	БлокипрограммыLegoWedo2.0.	2	1	1	1
2	СоставныечастиконструктораLego Wedo2.0.	2	1	1	практич. заданий
	Итого	4	2	2	задании
7	СборкамоделейLegoWedo2.0.				
1	Сборкаипрограммированиемодели «Роботтягач»	3	1	2	опрос, выполнениепра ктич.
2	Сборкаипрограммированиемодели	3	1	2	
	«Дельфин»				заданий
3	Сборкаипрограммированиемодели «Вездеход»	3	1	2	
4	Сборкаипрограммированиемодели «Динозавр»	3	1	2	
5	Сборкаипрограммированиемодели «Лягушка»	3	1	2	
	Итого	15	5	10	
	Итогочасов:	68			

3. Содержание программы

Вводное занятие

Цели и задачи программы **Теория**: Цели и задачи программы. Вводный инструктаж. **Практика:** Входная диагностика.

Раздел 1. Введение в робототехнику

Тема 1. История развития робототехники

Теория: Истории развития робототехники. Применение роботов в современном мире.

Практика: Сборка робота из деталей конструктора Lego.

Тема 2. Устройство персонального компьютера

Теория: Персональный компьютер. Порядок включения и выключения компьютера. Компьютерная мышь и клавиатура. Рабочий стол компьютера. Безопасные правила работы за компьютером.

Практика: Отработка навыка работы с персональным компьютером.

Тема 3. Алгоритм программирования

Теория: Алгоритм. Блок-схема алгоритма. Связь между программой и алгоритмом.

Практика: Составление алгоритма.

Раздел 2. Конструктор Lego Wedo

Тема 1. Набор конструктора Lego Wedo

Теория: Детали конструктора.

Практика: Сборка простейшей модели из деталей Lego.

Тема 2. Составные части конструктора Lego Wedo

Теория: Детали Lego Wedo, цвет элементов и формы элементов. Мотор и оси.

Практика: Сборка простейшей модели из деталей Lego.

Раздел 3. Программное обеспечение Lego Wedo

Тема 1. Программное обеспечение Lego Wedo

Блоки программы Lego Wedo

Теория: Программное обеспечение Lego Wedo. Главное меню программы. **Практика:** Изучение меню программного обеспечения Lego Wedo: Блок «Мотор по часовой ипротив часовой стрелки», блок «Мотор, мощность мотора, вход число», блоки «Цикл» и «Ждать».

Блоки программы Lego Wedo

Теория: Работа мотора с датчиком наклона и расстояния. Фон экрана и изменение фона экрана. Блоки «Послать сообщение» и «Текст». Блоки «Прибавить к экрану», «Вычесть из экрана», «Умножить на экран». **Практика:** Изучение процесса работы датчиков наклона и расстояния.

Разработка и запуск простейшей модели Lego Wedo

Практика: Разработка и запуск простейшей модели Lego Wedo.

Раздел 4. Детали Lego Wedo и механизмы

Тема 1. Мотор, датчики расстояния и наклона

Теория: Мотор: определение, назначение. Способы соединения мотора с механизмом. Подключение мотора к компьютеру. Маркировка моторов. Датчик расстояния: определение, назначение, процесс подключения к компьютеру. Датчик наклона: определение, назначен ие, процесс подключения к компьютеру. **Практика:** Составление элементарной программы работы мотора и датчиков расстояния и наклона. Запуск программы и ее проверка.

Тема 2. Зубчатые колеса, повышающая и понижающая передачи Зубчатые колеса (зубчатая передача)

Теория: Зубчатые колеса, понижающая и повышающая зубчатые передачи. Передача движениядвигателя модели: промежуточная передача, коронное зубчатое колесо.

Практика: Сборка моделей с передачами и составление программы.

Модель прямой зубчатой передачи. Модель понижающей зубчатой передачи

Практика: Сборка модели прямой и понижающей зубчатой передачи.

Составление программыдля модели и ее запуск.

Модель с коронным зубчатым колесом

Практика: Сборка модели с коронным зубчатым колесом. Составление программы для моделии ее запуск.

Модель с понижающим и с повышающим коронным зубчатым колесом

Практика: Сборка модели с понижающим и коронным зубчатым колесом.

Составление программы для модели и ее запуск. Сборка модели с повышающим коронным колесом. Составление программы для модели и ее запуск.

Тема 3. Ременная передача

Теория: Шкивы и ремни. Прямая ременная передача и перекрестная ременная передача. Повышающая и понижающая ременные передачи. Процесс сборки модели. Программа управления.

Практика: Сборка модели с прямой переменной передачей и перекрестной ременной передачей, составление программы для модели и ее запуск. Сборка модели, повышающей и понижающей ременной передачи, составление программы для модели и ее запуск.

Тема 4. Червячная передача

Теория: Червячная передача: определение, назначение, прямая и обратная зубчатая передача.

Практика: Сборка модели прямой червячной передачи, составление программы для модели иее запуск. Сборка модели обратной червячной передачи, составление программы для модели иее запуск.

Тема 5. Кулачковая и рычажная передачи

Теория: Кулачковая передача: определение, назначение. Пример сборки модели и состав программы управления. Рычажная передача: определение, назначение. Пример сборки модели и состав программы управления.

Практика: Сборка модели кулачковой передачи, составление программы для модели и ее запуск. Сборка модели рычажной передачи, составление программы для модели и ее запуск.

Раздел 5. Сборка моделей Lego Wedo

Тема 1. Сборка и программирование модели «Обезьянка барабанщица» (или «Голодный аллигатор»)

Сборка модели «Обезьянка барабанщица» («Голодный аллигатор»)

Теория: Конструкция, процесс работы и особенности программы модели. Разработкапростейшей программы для модели.

Практика: Сборка модели с использованием инструкции по сборке.

Программирование модели «Обезьянка барабанщица» («Голодный аллигатор») Практика: Набор на компьютере программы, подключение модели к компьютеру и запускпрограммы. Внесение изменений в конструкцию и программу модели. Анализ работы модели.

Тема 2. Сборка и программирование модели «Танцующие птицы» (или «Рычащий лев»)

Сборка модели «Танцующие птицы» («Рычащий лев»)

Теория: Конструкция, процесс работы и особенности программы модели. Разработкапростейшей программы для модели.

Практика: Сборка модели с использованием инструкции по сборке.

Программирование модели «Танцующие птицы» («Рычащий лев»)

Практика: Набор на компьютере программы, подключение модели к компьютеру и запуск программы. Обсуждение работы модели. Внесение изменений в конструкцию и программу модели. Анализ работы модели.

Тема 3. Сборка и программирование модели «Непотопляемый парусник»

Сборка модели «Непотопляемый парусник»

Теория: Конструкция, процесс работы и особенности программы модели. Разработка простейшей программы для модели «Непотопляемый парусник». Модель «Непотопляемыйпарусник» с дополнительным устройством (или программным блоком). Изменение в программеработы готовой модели.

Практика: Сборка модели с использованием инструкции по сборке.

Программирование модели «Непотопляемый парусник»

Практика: Набор на компьютере программы, подключение модели к компьютеру и запуск программы. Обсуждение работы модели. Внесение изменений в конструкцию и программу модели. Анализ работы модели.

Тема 4. Сборка и программирование модели «Нападающий» (или «Вратарь») Сборка модели «Нападающий» (или «Вратарь»)

Теория: Конструкция, процесс работы и особенности программы модели

«Нападающий». Разработка простейшей программы для моделей.

Практика: Сборка модели с использованием инструкции по сборке.

Программирование модели «Нападающий» («Вратарь»)

Практика: Набор на компьютере программы, подключение модели к компьютеру и запуск программы. Обсуждение работы модели. Добавление к модели датчика расстояния и изменениев программе. Анализ работы модели после запуска программы.

Промежуточная аттестация

Практика: Тестирование. Сборка модели по заданию.

Раздел 6. Конструктор и программное обеспечение Lego Wedo 2.0.

Тема 1. Блоки программы Lego Wedo 2.0.

Теория: Программное обеспечение Lego Wedo 2.0. Главное меню программы.

Практика: Изучение меню программного обеспечения Lego Wedo 2.0.

Тема 2. Составные части конструктора Lego Wedo 2.0.

Теория: Детали Lego Wedo, цвет элементов и формы элементов. Мотор и оси, датчики, СмартХаб WeDo 2.0.

Практика: Сборка простейшей модели из деталей Lego. Подключение СмартХаба WeDo 2.0.

Раздел 7. Сборка моделей Lego Wedo 2.0.

Тема 1. Сборка и программирование модели «Робот тягач»

Теория: Конструкция, процесс работы и особенности программы модели. Этапы разработкипростейшей программы для модели. Внесение изменений в программу работы готовой модели.

Практика: Сборка модели с использованием инструкции по сборке, набор на компьютерепрограммы, подключение модели к компьютеру и запуск программы. Обсуждение работымодели. Внесение изменений в конструкцию и программу

модели. Анализ работы модели.

Тема 2. Сборка и программирование модели «Дельфин»

Теория: Конструкция, процесс работы иособенности программы модели. Разработкапростейшей программы для модели. Изменение программы работы готовой модели.

Практика: Сборка модели с использованием инструкции по сборке, набор на компьютере программы, подключение модели к компьютеру и запуск программы. Обсуждение работы модели. Внесение изменений в конструкцию и программу модели. Анализ работы модели.

Тема 3. Сборка и программирование модели «Вездеход»

Теория: Конструкция, процесс работы и особенности программы модели. Разработка простейшей программы для модели. Изменение программы работы готовой модели.

Практика: Сборка модели с использованием инструкции по сборке, набор на компьютере программы, подключение модели к компьютеру и запуск программы. Обсуждение работы модели. Внесение изменений в конструкцию и программу модели. Анализ работы модели.

Тема 4. Сборка и программирование модели «Динозавр»

Теория: Конструкция, процесс работы и особенности программы модели. Разработка простейшей программы для модели. Изменение программы работы готовой модели.

Практика: Сборка модели с использованием инструкции по сборке, набор на компьютере программы, подключение модели к компьютеру и запуск программы. Обсуждение работы модели. Внесение изменений в конструкцию и программу модели. Анализ работы модели

Тема 5. Сборка и программирование модели «Лягушка»

Теория: Конструкция, процесс работы и особенности программы модели. Разработка простейшей программы для модели. Изменение программы работы готовой модели.

Практика: Сборка модели с использованием инструкции по сборке, набор на компьютере программы, подключение модели к компьютеру и запуск программы. Обсуждение работы модели. Внесение изменений в конструкцию и программу модели. Анализ работы модели.

Методическое и материально-техническое обеспечение программы

Для проведения занятий по программе необходимо использовать образовательные конструкторы LEGO WEDO и дополнительные элементы:

- Конструктор LEGO NXT
- Набор дополнительных элементов к конструктору «Технология и физика» 9686 LEGO Education «Возобновляемые источники энергии». Набор содержит солнечную батарею, лопасти, двигатель/генератор, светодиодные лампы, дополнительный провод и ЛЕГО-мультиметр (дисплей + аккумулятор), технологические карты для конструирования 6 моделей.

4. Учебно-методический комплекс

- 1. Учебное пособие для учащихся: набор из 20 карточек LEGO DACTA Technic 1031;
- 2. Учебное пособие для учащихся: набор из 15 карточек LEGO DACTA Technic «Простые машины и механизмы;
- 3. Методическое пособие для учителя: LEGO Technic 1. Activity Centre. Teacher's Guide. LEGO Group, 1990. 143 стр;
- 4. Методическое пособие для учителя: LEGO DACTA. Motorised Systems. Teacher's Guide. LEGO Group, 1993. 55 стр;

5. Список литературы

Для педагога

- 1. Робототехника для детей и родителей. С.А.Филиппов. СПб: Наука, 2010. 2. Санкт-Петербургские олимпиады по кибернетике М.С.Ананьевский, 3. Г.И.Болтунов, ІО.Е.Зайцев, Л.С.Матвеев, А.Л.Фрадков, В.В.Шиегин. Под ред. А.Л.Фрадкова, М.С.Ананьевского. СПб.: Наука, 2006.
- 4. Технология и физика. Книга для учителя. LEGO Educational

Для детей и родителей

- 1. Робототехника для детей и родителей. С.А.Филиппов. СПб: Наука, 2010. 2. Санкт-Петербургские олимпиады по кибернетике М.С.Ананьевский,
- 3. Г.И.Болтунов, Ю.Е.Зайцев, А.С.Матвеев, А.Л.Фрадков, В.В.Шиегин. Под ред.
- 4. А.Л.Фрадкова, М.С.Ананьевского. СПб.: Паука, 2006.
- 5. Журнал «Компьютерные инструменты в школе», подборка статей за $2010\ {\rm r.}$